How To: Marine Electrical Seminar

Improving electrical systems on your boat.

Electrical & Electronics Fundamentals & Troubleshooting Tips

Before we get started . . .

- Cell phones off please
- Ask questions
- Take lots of notes / drawings
- All slides will be provided to you online

Electrical Fundamentals

Voltage Amps Resistance DC AC

What is Voltage?

- Amount of potential energy between two points
- Greater the voltage, greater the potential current flow

What is Voltage?

Let's compare voltage to water pressure

Fire Hose

What is Voltage?

Voltage is like water pressure. The greater the pressure (voltage), the greater the potential energy.

- Let's continue our water analogy
- Water (electrical current) is flowing through the hose

• What might create resistance - restrict the flow?

• Stepping on the hose will create resistance

Inserting a very small hose will create more resistance

• This will slow the flow of current even more

A light bulb contains a small wire called a filament

It creates resistance and slows the flow of current

• A light bulb contains a small wire called a filament

It creates resistance and slows the flow of current

Ohm's Law

Current = Voltage

Resistance

Units of Mea	isure		
Current:	amps	amps =	volts
Voltage:	volts		ohms
Resistance:	ohms		

Ohm's Law

Ohm's Law

Batteries in series & parallel

Batteries in series & parallel

Connect batteries in series with

Batteries in series

jumper wire and measure voltage.

Batteries in parallel

HANDS ON TRAINING

HANDS ON TRAINING

Electrical short circuits

- Happens when wire chafes through or disconnects
- Positive wire makes contact directly with ground
- Result is a huge current flow

Wire can melt

Biggest cause of boat fires

Properly located and sized fuse or breaker should protect

POWER: Introducing the watt

- Power: actual rate of doing work
- Good comparison might be calories being burned
- Unit of measure of electrical power is the watt
- Examples of electrical work being done on a boat:
 - Light bulb glowing: 60 watts
 - VHF radio transmitting: 25 watts
 - Windlass motor turning: 1200 watts

POWER: Introducing the watt

Converting watts to amps

- Amps are a measurement of current (electron flow)
- Amps vary widely based on voltage in circuit
- Amps influence
 - size of wire to use for heat / fire
 - size of wire for long wire run (voltage drop)
 - size of fuse or breaker

Converting watts to amps Example: Microwave on 120 VAC

Voltage x Current = Power

Current	=	Power (W)		
		Voltage (V		
Current	=	1200 W	_ =	10 A
		1201/		

LZU

1200 watt Microwave

- Typical residential breaker is 15 amp.
- Typical wire size is 14 gauge.

Converting watts to amps Example: Windlass at 12 VDC

Current = <u>Power (W)</u> Voltage (V) Current = 1200 W = 100 A

- 12 V
- 125 amp breaker (1.25 X Current Rating)
- Minimum wire size 0

1200 watt windlass

Converting watts to amps Example: Windlass at 13.5 VDC

= <u>Power (W)</u> Voltage (V)

Current = $\frac{1200 \text{ W}}{13.5 \text{ V}}$ = 89 A

Converting watts to amps Example: Windlass at 24 VDC

Current = Power (W) Voltage (V)

Current = $\frac{1200 \text{ W}}{24 \text{ V}}$ = 50 A

DC - Direct Current

- Current (electrons) flow in one direction
- Normally associated with batteries & solar panels
- Can also be generated electronically

AC - Alternating Current

- Standard type of power used in our homes
- Also shore power or generator
- Typical household voltage is 120 volts
- Current (electrons) flow in both directions

Electrical Fundamentals: Wiring Essentials

Marine Wiring Standards

- Safety standards apply to marine electrical wiring
 - Protect you from fire and electrocution
 - Reliable operation of devices
- Follow ABYC standards
 - ABYC Standard E-11

• Do It Right the First Time

On boats use only braided wire

Solid copper household wire. Do NOT use this!

Proper marine grade braided copper wire that has been tinned.
ABYC Marine Color Code

12 VDC Marine Wire Colours

Marine Wire Color Codes - DC Systems Less Than 50 Volts

Color		Item	Use							
Yellow or Black1		Ground	Return, Negative Mains							
Lt. Blue		Oil Pressure	Oil Pressure Sender to Gauge							
Dk. Blue		Cabin & Instrument	Fuse or Switch to Lights							
Brown		Generator Armature	Generator Armature to Regulator							
	l'attili	Alternator Charge Light	Generator Terminal or Alternator Auxiliary							
	1		Terminal							
	ki si		to Regulator							
	Kali	Pumps	Fuse or Switch to Pumps							
Green		Bonding System	Bonding Wires (if insulated)							
Grey	1220	Navigation Lights	Fuse or Switch to Lights							
		Tachometer	Tachometer Sender to Gauge							
Orange		Accessory Feed	Ammeter to Alternator or Generator Output							
		_	and							
			Accessory Fuses or Switches							
		Common Feed	Distribution Panel to Accessory Switch							
Pink		Fuel Gauge	Fuel Gauge Sender to Gauge							
Purple		Ignition	Ignition Switch to Coil & Electrical Instrument							
		Instrument Feed	Distribution Panel Electrical Instruments							
Red		Main Power Feeds	Positive Mains (particularly un-fused)							
Yellow		Generator Field	Generator to Regulator Field Terminal							
Brown w/Yellow	******	Bilge Blowers	Fuse or Switch to Blower							
Yellow w/Red		Starting Circuit	Starting Switch to Solenoid							
 Since marine AC systems use black wires as the current carrying wire (hot), black is 										

being phased out on marine DC systems to help prevent confusion.

12 VDC Polarity

- Most DC devices are polarity sensitive.
 - Won't work if polarity is reversed
 - Devices might be damaged
 - This bilge pump would run backwards if polarity was reversed!

12 VDC marine wire colours

Red: Positive / Power Supply

Black or Yellow: Negative / Ground

Know this. And don't ever touch Pos & Neg wires together!

120 VAC wire colours

Use extreme caution. Shut off AC power and test first!

Wire Gauge (wire diameter)

The smaller the number - the thicker the wire.

Wire Gauge & Risk of Fire

- Thicker wire will carry more current (amps)
- If wire is too small for the current it gets hot
- If way too small it will catch fire

Use a Wire Ampacity Table to determine correct wire size for current in your circuit.

Wire Gauge & Voltage drop

- All wire has some resistance
- Can be a problem in 12 / 24 VDC circuits
- Longer the wire -> more the resistance
 - Result is voltage drop -> device will might NOT work
- Thicker wire has more copper less friction
- Easily calculated with Wire Voltage and Amperage Table

Wire Ampacity & Voltage Table

U.S. Coast Guard regulation requires all ungrounded current carrying conductors (except the starting circuit) to be protected with a circuit breaker or a fuse.

	CIRCUIT	ΤΥΡΕ						CUF	REN	T FL	OW	IN AI	MPS					
	10% Non VOLTAGE DROP Critical	3% VOLTAGE DROP Critical	5A	10A	15A	20A	25A	30A	40A	50A	60A	70A	80A	90A	100A	120A	150A	200A
CIRCUIT LENGTH	0 to 20 ft	0 to 6 ft		16 AWG	14 AWG	14 AWG	12 AWG	10	8	6	6	6		4	4			
	30 ft	10 ft	16 AWG	14 AWG	12 AWG	12 AWG	10 AWG	AWG	AWG	AWG	AWG	AWG	4 AWG	AWG	AWG	2 AWG	1 AWG	210
	50 ft	15 ft		12 AWG	10	10 AWG	8 AWG	8 AWG	6		4	4 AWG		2	2			AWG
	65 ft	20 ft	14 AWG		AWG	8 AWG		6	AWG	4	AWG	2	2	AWG	AWG	AWG	AWG	
	80 ft	25 ft	12	10 AWG	8		6 AWG	AWG	4	AWG	2	AWG	AWG	1 AWG	AWG	0 AWG	2 0 AWG	3 0 AWG
	100 ft	30 ft	AWG		AWG	6 AWG		4	AWG	2	AWG	AWG	1 AWG	0 AWG	0 AWG	2 0 AWG	3 0 AWG	4 0
	130 ft	40 ft		8 AWG			4	AWG	2	AWG	1 AWG	0 AWG	0 AWG	2 0 AWG	2 0 AWG	3 0 AWG	4 0	AWG
	165 ft	50 ft	10 AWG		6 AWG	4	AWG	2	AWG	1 AWG	0 AWG	2 0 AWG	3 0	3 0 AWG	3 0 AWG	4 0	AŴG	
	200 ft	60 ft		6		AWG		AWG	AWG	0 AWG	2 0 AWG	3 0	AWG	410	4 0 AWG	AWG		
	9 <u>.</u>	70 ft		AWG	4		AWG	1	0	2 0	3 0	AWG	4 0	AŴG				
		80 ft	8 AWG		AWG	2		AWG	AWG	AWG	AWG	4 0	AŴG					
		90 ft				AWG	1		2 0	3 0		AWG						
		100 ft		4			AWG	AWG	AWG	AWG	4 0 AWG							
		110 ft	6	AWG	AWG													
		120 ft	AWG			AWG	0 AWG	2 0	3 0 AWG	4 0 AWG								
		130 ft		2 AWG				AWG										

Although this process uses information from ABYC E-11 to recommend wire size and circuit protection,

it may not cover all of the unique characteristics that may exist on a boat. If you have specific questions about your installation please consult an ABYC certified installer.

© Copyright 2010 Blue Sea Systems Inc. All rights reserved. Unauthorized copying or reproduction is a violation of applicable laws.

Created by Jeff Cote of Pacific Yacht Systems, Inc.

www.pysystems.ca

Voltage Drop & Wire Length Example: Anchor Light

Wire Run Length To: 10 + 40 (positive) From: 40 + 10 (negative)

Total = 100 ft

Anchor Light 5 amps

Wire Ampacity Table

U.S. Coast Guard regulation requires all ungrounded current carrying conductors (except the starting circuit) to be protected with a circuit breaker or a fuse.

Although this process uses information from ABYC E-11 to recommend wire size and circuit protection, it may not cover all of the unique characteristics that may exist on a boat. If you have specific questions about your installation please consult an ABYC certified installer.

© Copyright 2010 Blue Sea Systems Inc. All rights reserved. Unauthorized copying or reproduction is a violation of applicable laws.

Created by Jeff Cote of Pacific Yacht Systems, Inc.

www.pysystems.ca

Fuses - to protect wires

- Wires can catch fire with too much current
 - Short circuit
 - Too small wire for load
- The fuse becomes the WEAK LINK in the wire
 - designed to blow first
 - protects the wire
- Locate the fuse close to the power source

Fuses - to protect wires

Fuses come in many styles and amp ratings

Continuity (Ohms) Test

Testing a fuse is easy!

Continuity (Ohms) Test

Testing a fuse is easy!

Fuses and Circuit Breakers

Safety reminder

- Prevents fire
- Prevents electrocution
- Safeguards critical equipment
- Electrical kill switch
- Breaks connection

Fuse Selection Guide

Although this process uses information from ABYC E-11 to recommend wire size and circuit protection,

it may not cover all of the unique characteristics that may exist on a boat. If you have specific questions about your installation please consult an ABYC certified installer.

© Copyright 2010 Blue Sea Systems Inc. All rights reserved. Unauthorized copyring or reproduction is a violation of applicable laws.

Fusing Demo #1: Fuse located near battery

Fusing Demo #2: Fuse close to appliance

Fusing Demo #3: Two wire sizes, fuse for each wire

Fusing Demo #4: Two wire sizes, large fuse only

Fuse & Circuit Breaker Installation Tips

- Size to handle load and wire gauge
 - IMPORTANT: Avoid nuisance tripping
- Disconnect "turn off" load before swapping fuse
- Use cover to protect positive (energized) post
- Carry spare fuse near fuse holder
- Choose thermal breaker when:
 - Recommended by manufacturer
 - Use a switch
 - Trip possibility (e.g. motors: water pump, windlass, etc...)

Troubleshooting

Trouble Shooting Theory

- Requires a basic understanding of the circuit
- What are the components that could fail?
- Requires a logical and methodical approach
- It is usually NOT the device that has failed

Eliminate the Obvious

- It is the battery switch turned on?
- Is the main breaker panel switch turned on?
- Is the branch breaker to the device turned on?
- Is the switch on the device itself turned on?

Trouble Shooting Theory

- If no luck, start working through the circuit
- Typical problems on boats:
 - No power or not enough power to device
 - Battery voltage has dropped too low
 - Corrosion on terminal or connector
 - Broken wire or loose connector
 - Short circuit from chafed wire
 - Blown fuse or breaker fuse may be hidden

Use your meter to test the entire circuit in sequence

Typical NMEA 0183 Network

ACTISENSE NMEA 0183 NETWORK DIAGRAM

Build your NMEA 0183 network with Actisense products

N2K Network Diagram

N2K Maretron Example

High-Level N2K & Ethernet Connectivity

Mid-Size Nav System Raymarine Classic

Mid-Size Nav System Garmin Example

Large Nav System Furuno Example

DC Conceptual Overview

Conceptual Diagram – DC Overview

Charger Conceptual Diagram

Inverter & Inverter/Charger Conceptual Diagram

Alternator Conceptual Diagram

Created by Jeff Cote of Pacific Yacht Systems, Inc. www.pysystems.ca

External Regulator Conceptual Diagram

Solar

Conceptual Diagram

Methanol Fuel Cell Conceptual Diagram

www.pysystems.ca

AC Gen & DC Gen Conceptual Diagram

www.pysystems.ca

Battery Combiner Conceptual Diagram

Battery Isolator Conceptual Diagram

Battery Monitor Conceptual Diagram

AC Conceptual Diagram

Galvanic Isolator Conceptual Diagram

Conceptual Diagram: Galvanic Isolator Applications		
Conceptual Diagram: Galvanic Isolator Applications	AC Source Selector	Image: A constraint of the second of the
	Pacific Yacht Systems	
© All Rights Reserved, PYS 2018 WWW.pvsvstems.c	Web www.pysystems.ca	E I solutions@pysystems.c